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REVIEW 

The Principle of Corresponding States and Prediction 
of Gas-Liquid Separation Factors and Thermodynamic 
Properties: A Review 

R. A. MENTZER, R. A. GREENKORN, 
and K. C. CHAO* 

SCHOOL OF CHEMICAL ENGINEERING 
PURDUE UNIVERSITY 
WEST LAFAYETTE, INDIANA 47907 

Abstract 

A review is made of the development of the principle of corresponding 
states and the utility of the molecular shape factor method for the description 
of properties of pure fluids and fluid mixtures. From consideration of angle 
averaging of the potential energy of nonspherical molecules, shape factors 
were devised to relate the state of an acentric fluid with that of a reference 
fluid. With the development of correlations for the correspondence of states, 
an accurate equation of state of the reference fluid is made to apply to many 
fluids. The method is extended to mixtures with the introduction of van der 
Waals' combining rules. Extensive calculations show that the use of methane 
as the reference fluid yields useful results for paraffin hydrocarbons up to about 
C,, cyclic hydrocarbons of even higher molecular weight, and nonassociating 
polar substances. Diverse properties are examined including volumetric 
properties, vapor pressures, K-values, enthalpies, excess properties of mixing, 
and transport properties. 

INTRODUCTION 

A quantitative description of fluid properties is essential to the design of 
separation equipment for distillation, extraction, and absorption. Methods 
for estimating thermodynamic properties are necessary, since experi- 
mental data are rarely available for a system at the conditions of interest. 
The principle of corresponding states (PCS) has been found to be a useful 

*To whom correspondence should be sent. 
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1614 MENTZER, GREENKORN, AND CHAO 

method for the prediction of pure fluid and mixture properties from a 
minimum amount of information. 

Van der Waals originated the PCS method in the late 1880s when 
he wrote his equation of state in reduced form suggesting that all sub- 
stances obey the same equation of state in terms of reduced variables. 
Accordingly, the compressibility factor, z = p V/(nRT), can be written as 
a universal function of the reduced temperature and volume, 

Generalized correlations have been prepared based on the two-parameter 
form of the PCS, but for practical convenience the reduced pressure, 
p/p‘, was used in place of the reduced volume, V/Vc,  as an independent 
variable. The two-parameter PCS was found to give accurate results only 
for simple spherically symmetric molecules, such as the noble gases Ar, 
Kr, and Xe. 

To extend the PCS to a wider range of fluids, two different approaches 
have been taken, and these may be summarized with the following two 
equations : 

and 

In the first approach, shown by Eq. (2), various third parameters a have 
been developed: (a) the Riedel factor, ctC, by Riedel (f), (b) the critical 
compressibility, zc,  by Lydersen et al. (2),  (c) the molecular length-width 
ratio by Leland et al. (3), (d) the acentric factor, w, by Pitzer et al. (4), 
and (e) the orientation factor, y ,  by Lee and Starling (5). Leland et al. 
(6), and Gunn et al. (7) have also developed three-parameter approaches 
to account for quantum effects. Thus a group of molecules (i.e., simple 
almost spherical nonpolar molecules, light hydrocarbons, etc.) having the 
same value of a will conform within the group to the PCS. Various fourth 
parameters, b, have been used so that polar molecules can be included in 
a corresponding states development. Most notable are developments by 
Eubank and Smith (8), Halm and Stiel (9), O’Connell and Prausnitz (fO), 
and Harlacher and Braun (11). 

In the other approach to extend the PCS, indicated by Eq. (3), the reduc- 
ing temperature and reducing volume do not assume fixed values equal to 
the critical properties, but are considered scaling factors that vary with 
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PRINCIPLE OF CORRESPONDING STATES 1615 

the temperature and volume. Their function is to define the state of the 
reference fluid that corresponds to the state of the fluid of interest. An 
accurate equation of state of the reference fluid thus serves to accurately 
describe many fluids. The scaling factors for mixtures are obtained as 
combinations of those of the components through the use of combining 
rules for the scaling temperature and volume. In contrast, combination 
of the third parameters of Eq. (2) has remained elusive. As a result, the 
scaling factor method is far more advanced for the description of fluid 
mixtures. We will deal with the scaling factor approach exclusively in this 
review. 

Leland and Chappelear (12) presented an extensive review of the 
PCS. Gubbins (13), in his review of perturbation methods, discussed 
several corresponding states developments for predicting the properties of 
liquids. More recently, Rowlinson (14, 15) described the thermodynamics 
of fluids based on Eq. (3). It is the purpose of this article to present a 
comprehensive account of the PCS with scaling factors encompassing 
the theoretical background, working equations, previous calculations, 
and new results on excess properties of liquid solutions. 

THEORETICAL BASIS 

Thermodynamic properties of a system can be calculated from the 
canonical partition function, which completely describes a system with 
fixed temperature, volume, and number of molecules. Assuming that the 
translational and intramolecular (vibration, rotation, ...) degrees of 
freedom are independent, the partition function can be expressed as the 
product of two terms (Chao and Greenkorn, 16): 

Q(N,  V, T )  = Q'"'(N, V, T)Q'"'(N, T )  (4) 

Only the translational contribution, pxt, depends on the density. Assum- 
ing that the translational states can be treated classically, the partition 
function becomes 

(5 )  
Q = - Q i n t ( ~ )  1 2nmkT S . . . S e x p ( - ~ ) d ~  ~...  dr, 

N !  

where U is the total potential energy. The potential energy is due to the 
intermolecular forces of ail of the molecules in the fluid, and in general 
depends on the sum of two-body interactions, three-body interactions, etc. 
The contribution due to intramolecular degrees of freedom, Q'"', can be 
evaluated from ideal gas properties. The description of a real system thus 
focuses attention on the contribution of the intermolecular potential energy, 
the only unknown. Eq. ( 5 )  is conventionally expressed as 
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I616 MENTZER, GREENKORN, A N D  CHAO 

Qconf = 1 ... j e x p  ( - z ) d r ,  ... dr, (7) 

The quantity Qconf is called the configuration integral. Once this term 
has been evaluated, the description of a real system is complete. 

Direct evaluation of the configuration integral for real fluids is difficult. 
The physical properties of a real system are therefore rarely calculated 
this way. The PCS provides an alternate approach. The basic idea behind 
the PCS is the application of a dimensional analysis technique to the 
configuration integral. Dimensionless configurational properties, such as 
the compressibility, fugacity coefficient, or enthalpy departure, are then 
expressed as universal functions of dimensionless temperature, volume, 
etc. The known configurational properties for one substance are then used 
to calculate the same properties for other substances. 

The molecular theory of the PCS is based on the consideration of con- 
formal fluids. Two pure fluids are said to be conformal if their inter- 
molecular potentials are of the same functional form. Thus the pairwise 
interaction potential of fluid cc can be expressed in terms of a conformal 
reference fluid 0 as follows: 

where 

The subscript 0 denotes a reference substance whose intermolecular 
potential, coo, is known. The intermolecular potential energy for another 
conformal fluid, E,,, can be determined once the scaling factors fuu,o and 
gaa,o, called conformal parameters, are known. Rowlinson (17) considered 
N molecules of substance 0 confined to a volume V at a temperature T, 
and an equal number of molecules of substance CI confined to a volume 
V ( O , ~ / ~ , , ) ~  at a temperature T ( E , , / E ~ ~ ) .  If the two containers have the same 
shape, then their linear dimensions are in the ratio (aoo/aau). Therefore, 
for each particular configuration of the first assembly, there is a corre- 
sponding configuration for the second such that the potential energy 
may be written as 
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PRINCIPLE OF CORRESPONDING STATES 1617 

In Eq. (9), pairwise additivity is not assumed. Combining Eqs. (7) and (9), 
the following relation between the configuration integrals is obtained: 

QYft', 'I = g?~oQTP"f[T/La,O, J'/~Za,ol (10) 
The configuration integral of fluid a can therefore be calculated from that 
of fluid 0. The configurational Helmholtz energy and pressure are found 
to be 

AJT, 'I = -La,OAO[T/La,O, V/S,~,,OI - 3NkTln (gaa,o) 

Pa[T,  'I = (-La,o/~?a,o~~o[~/f,a,o, v/~:a,oI 

(11) 

(12) 

The latter relation expresses the equation of state for fluid a in terms of 
the equation of state for fluid 0, which is the basis for the PCS. The phase 
diagram in reduced form is thus identical for all fluids which obey con- 
formal intermolecular potentials. 

The molecular requirements for a substance to obey the simple two- 
parameter PCS were first presented by Pitzer (28). They can be summarized 
as follows (Reed and Gubbins, 19): 

(a) The translational and internal contributions in the canonical parti- 
tion function are separable, as in Eq. (4). 

(b) Only the configurational partition function is dependent on density. 
The internal energy states therefore assume their ideal gas values. 

(c) The translational and configurational portions of the partition 
function can be treated classically, and Maxwell-Boltzmann 
statistics applies. This assumption was used to obtain Eq. (5 ) .  

(d) The total potential energy of the system can be expressed as the 
product of a characteristic energy parameter and a common 
function of dimensionless separation distance. 

The first two assumptions are valid at low densities and for simple fluids 
even at high densities, but may be in error for polyatomic fluids or for 
associating molecules. The third assumption is satisfactory except for 
light molecules at low temperatures. The fourth assumption is the most 
restrictive. The stipulation of separation distance as the only geometric 
variable rules out any possible angle dependence. 

Simple fluids of monatomic molecules such as Ar, Kr, and Xe satisfy 
all these requirements and follow the PCS to a high degree. Pitzer and 
co-workers (4) and others developed excellent PCS correlations of their 
properties. But just about all other substances fail to satisfy some of the 
requirements, and the most common failure is the last assumption due 
to the nonspherical shape of the molecules. 

The intermolecular potential between a pair of nonspherical molecules 
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1618 MENTZER, GREENKORN, AND CHAO 

is dependent on orientation. The potential is more complex than Eq. (8), 
and thus does not conform in a simple way to the two-parameter PCS. 
Pople (20) expanded an orientation-dependent potential about a sym- 
metrical contribution in a series of spherical harmonics. The intermolecular 
potential was separated into a central force term and terms depending on 
orientation. The angle-dependent contributions were treated as perturba- 
tions on the central-force term. Cook and Rowlinson (21) showed that for 
elliptical molecules or slightly polar molecules the orientation-dependent 
potential reduces to a simple form upon averaging over all orientations. 
The correct angle-averaged intermolecular potential is a free-energy 
average (Rushbrooke, 22). The orientation-dependent potential is thus 
replaced by a temperature-dependent pair potential, and effective inter- 
molecular parameters E(T) and a(T) appear. In certain cases the free-energy 
averaged potential is of the same functional form as the potential for simple 
fluids, and therefore will obey the same two-parameter PCS: 

0, 81, 82, 4) = E@, T )  = Eo(T)f - (13) 

Average pair potentials of this form have been determined for various 
molecular interactions by Cook and Rowlinson (21) and Leach (23). 

Complex fluids whose intermolecular potential can be expressed by 
Eq. (13) when orientation averaged obey the same two-parameter PCS of 
simple fluids with effective intermolecular parameters related to critical 
properties as follows : 

(b;T)) 

&(TI = amce(T)  

a3(T)  = bVCq5(T) (14) 
where a and b are universal constants for all conformal fluids obeying a 
two-parameter PCS. Molecular shape factors, 8 and 4, modify the critical 
constants to give effective reducing parameters 8T' and 4 V c  that are 
temperature dependent. Since the intermolecular potential function of 
real molecules is not precisely known, it is most useful to define the shape 
factors 8 and 4 directly from configurational properties without referring 
to any specific average pair potential. The shape factors would be on a 
sound theoretical basis when determined by setting the configurational 
properties of the nonspherical molecule of interest equal to those of 
a simple spherical molecule. 

To evaluate the molecular shape factors of real substances, Gilbert (24) 
considered the reduced second virial coefficient as a function of reduced 
temperature : 
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PRINCIPLE OF CORRESPONDING STATES 1619 

The function f was the reduced second virial coefficient of methane which 
was selected as the reference fluid. Values of 4 and 0 were determined for 
the normal paraffins, ethane through n-octane, by forcing their second 
virial coefficients as correlated by McGlashan and Potter (25) to conform 
to Eq. (1 5).  Gilbert applied the shape factors thus obtained for the calcula- 
tion of compressibilities and fugacity coefficients. The calculations are 
in good agreement with experimental data at low pressures, but become 
poor at higher pressures. At these larger pressures (or densities) the higher 
order virial coefficients can no longer be made up of the sum of pair 
interactions. The usefulness of Gilbert’s results is thus limited because 
of the exclusive consideration of the second virial coefficient and the 
consequent lack of representation of other modes of interaction. Leach 
(23) found that for gases at low densities the shape factors can be deter- 
mined from second and third virial coefficients. In this region the shape 
factors depend only on temperature, and the configuration integrals of 
the two fluids are equal. In general, however, density-independent shape 
factors cannot be found which would equate the configuration integrals 
of two fluids with orientation-dependent potentials. If density-dependent 
shape factors are defined by equating configuration integrals, dimension- 
less properties derived by differentiation of the integrals with respect to 
density, such as compressibilities or fugacity coefficients, will not be equal 
at corresponding reduced conditions. Terms involving (aO/a V) and (&$/a V) 
must be included in the expressions. On the other hand, the enthalpies 
and internal energies for two nonsimilar fluids will not be equal at the 
same reduced conditions, since the shape factor expressions are tempera- 
ture dependent and these thermodynamic properties involve temperature 
derivatives of the configuration integral. Only the Helmholtz free energies 
of the two fluids will be equal. Shape factors determined by equating 
fugacities and compressibilities are more convenient to use, especially for 
vapor-liquid equilibrium calculations, than those determined by equating 
configuration integrals or other configurational thermodynamic properties. 
Enthalpies and internal energies can then be calculated in either of 
two ways 1 

(a) By including the temperature derivatives of the shape factors in 
the working equations. 

(b) Through the use of “second-order” shape factors which are 
determined by equating the enthalpies or internal energies of two 
fluids. The second-order shape factors correct the reduced tem- 
perature and reduced volume in the same manner as the first-order 
shape factors. 
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I620 MENTZER, GREENKORN, A N D  CHAO 

CORRELATION OF THE CONFORMAL PARAMETERS 

Two pure fluids, CI and 0, are defined as being in corresponding states 
when their compressibilities and fugacity coefficients are equal (Leach 
et al., 26): 

za[Ta7 Val = ZO[TO, V0l (16) 

These equations map from the T-V space of fluid 0 to the T-V space of 
fluid a. Some authors write Eq. ( 1  7) in terms of either the configurational 
Helmholtz energy or configurational Gibbs energy (Rowlinson and 
Watson, 27; Yuan et al., 28; and Mollerup, 29). The logarithm of the 
fugacity coefficient may be expressed as 

where Ga is the configurational Gibbs free energy of fluid CI. Combining 
Eqs. (17), (18), and the relation G = A + p V ,  one finds that 

AaCTm Val = f i a , o A o [ T o ,  V0l - RTa ln ( h a a , o )  (19) 

faa.0 E TalTo (20) 

haa,o E Va/Vo (21) 

where 

Equation (17) is often written in this form. The conformal parameter 
haa,O is analogous to g2a,o.  The first subscript refers to the fluid of interest 
and is doubled for later generalization to mixtures, and the second 
subscript, 0, refers to the reference substance. Yuan et al. (28) used Eq. 
(21) instead of Eq. (16) when defining two substances as being in corre- 
sponding states. These two equations are equivalent. 

Substituting Eqs. (20) and (21) into Eqs. (16) and (19), one obtains 

za[Ta, Val = z o [ L ,  facr,o haa ,o  "-1 
Other thermodynamic properties follow from Eqs. (22) and (23). To 
perform calculations using these equations, one must know haa,o, 
and the thermodynamic properties of the reference substance. The utility 
of this approach lies in the ability to generalize the two conformal param- 
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PRINCIPLE OF CORRESPONDING STATES 1621 

eters. Noting that the numerical values off,,,, and h,a,O are close to the 
ratio of critical temperatures and volumes, one may write 

(24) 
Ta T,C 
To To faa,o = - = ~ e a a , o  

In these expressions the ratio of critical temperatures or critical volumes 
is chosen as a basis for expressing the ratio of temperatures or volumes. 
The shape factors Oaa,o and 4aa,0 correct for the departure from the ratio 
of the critical values. Equations (24) and (25) can be rearranged to illus- 
trate the relationship between the reduced properties of fluids LY and 0. 

(26) TO 'a T,R ToR = 7 = - = - 
TO T/eaa,O eaa,o 

The shape factors are seen to multiply the critical constants of the fluid of 
interest to form the reduced properties Ta/(T,"Oaa,o) and Val( V/$aa,o) 
which will predict the thermodynamic properties of substance a when 
substituted into an equation of state for fluid 0. 

Generalized expressions for the first-order shape factors were developed 
from data on the normal hydrocarbons ethane through pentadecane and 
isooctane in terms of Eqs. (16) and (17) by Leach et al. (30). Methane was 
chosen as the reference substance, since its volumetric behavior is known 
very accurately. The following empirical relations were found to represent 
the shape factors: 

daa,o = I + (0, - 0,)[0.0892 - 0.8493 In (TaR)] 
+ [(0.3063 - 0.4506/TaR)(VaR - 0.5)] (28) 

4,, ,O = ( 1  + (0, - ~ 0 ) [ 0 . 3 9 0 3 ( V , ~  - 1.0177) 

z/ 
2 0  

- 0.9462( VaR - 0.7663) In (TaR)]} 7 

where for pure fluids TaR = T,/T,' and VaR = Va/ V,C. These relations are 
subject to the following constraints: 

when TaR 2 2.0 set TaR = 2.0 
V,R 2 2.0 VaR = 2.0 

V /  2 0.5 V," = 0.5 
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I 622 MENTZER, GREENKORN, AND CHAO 

The shape factors are seen to depend on temperature, density (to a limited 
extent), and the difference between acentric factors and critical compress- 
ibilities of the fluid of interest and the reference fluid. It is interesting to 
note how the commonly employed third parameters o and zc are intro- 
duced into this methodology. Although Eqs. (28) and (29) were developed 
from data of the range 0.6 5 TR 5 1.5, they have been successfully applied 
to reduced temperatures of 0.3 (Leach, 23; and Mollerup and Rowlinson, 
31). Generalized correlations for the second-order shape factors of 
hydrocarbons were also determined by Leach et al. (30). These shape 
factors, which are independent of density, were determined by the simul- 
taneous solution of two reduced internal energy deviation equations on a 
single isotherm. 

Leach et al. (30) also developed expressions for the shape factors of 
quantum fluids. The first-order shape factors were determined by equating 
the reduced second virial coefficients and compressibilities of a quantum 
fluid with those of methane, the reference. These shape factors show the 
same qualitative behavior as those for the hydrocarbons, except at low 
temperatures where the former exhibit an extremum. Individual density- 
dependent shape factor correlations were developed for hydrogen, 
deuterium, and helium. An approximate generalized correlation was also 
developed, which is independent of density. Second-order shape factors 
were determined only for hydrogen. 

The thermodynamic consistency of the shape factor expressions, Eqs. 
(28) and (29), has been examined by Canfield and Gunning (32) and 
Gunning (33). From classical thermodynamics one knows that the 
Helmholtz energy and pressure are related as 

(g)T= -P 

Substituting Eq. (23) into Eq. (30), one finds that Eq. (16) will only be 
obeyed if 

This equation can therefore be used to test the thermodynamic consistency 
of the shape factor expressions. After examining data for oxygen, nitrogen, 
and argon it was concluded that the small inequalities of the sides of 
Eq. (31) do not affect the calculations. As the temperature is lowered below 
a reduced temperature of one, the equality becomes less precise. 

The shape factors obey the following algebraic relationships (Gilbert, 
24; Leach, 23; Rowlinson and Watson, 27). According to the reciprocal 
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PRINCIPLE OF CORRESPONDING STATES I623 

rules 

and according to the ratio rules: 

These equations are useful for switching reference fluids, since one might 
want to use a reference substance other than methane. The triple point of 
methane occurs at a reduced temperature of 0.48. To carry out calcula- 
tions at lower temperatures, a different reference substance may be chosen. 
Also, it is advantageous to choose a reference substance which is as similar 
as possible to the fluid of interest. The change from reference substance 0 
to reference p is given by the iterative solution of the nonlinear Eqs. (34) 
and (35). Leach (23) and Fisher and Leland (34) have used pentane as 
a reference substance. 

REFERENCE F L U I D  REPRESENTATION 

Calculations using the PCS require that the thermodynamic properties 
of the reference substance be known very accurately. The properties 
may be given in tabular form or expressed by an equation of state. Methane 
is the most commonly used reference because its thermodynamic properties 
are well known, and it was used as the reference when determining the 
shape factors. 

Yuan et al. (28) and Palmer et al. (35) chose to represent the thermo- 
dynamic behavior of the reference fluid in tabular form. Data tables for 
benzene and cyclohexane were prepared at temperature intervals of 1 K. 
This method has the advantage that the data can easily be changed when 
better data become available without having to refit the equation of state. 
A large amount of computer space is, however, required to store the data, 
and integrations and differentations of the data must be carried out 
numerically. 

The choice of an equation of state to represent the phase diagram is 
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I 624 MENTZER, GREENKORN, AND CHAO 

a matter of convenience and accuracy. Leach (23) chose to use methane 
and pentane as reference substances. The available data were fit to within 
the experimental uncertainty by dividing the phase diagram into four 
regions: a dilute gas region, two dense fluid regions, and a liquid region. 
Each region was represented by a different equation of state. Fisher 
and Leland (36) represented the vapor phase of methane with the Vennix- 
Kobayashi (37) equation of state, and the liquid phase with the Tait 
equation (Hirschfelder et al., 38). Teja and Rowlinson (39) used the 
Vennix-Kobayashi equation of state for methane as the reference when 
calculating the critical regions of fluids. 

Today several equations of state are available which describe the 
thermodynamic properties of methane over the entire phase diagram. 
Recent modifications of the Benedict-Webb-Rubin (BWR) equation of 
state have been used to represent the reference fluid. This type of function 
is easy to manipulate due to its analytic nature. Teja and Rice (40) used 
the 20 constant Bender (41) equation of state to represent the phase 
behavior of methane. The 33 constant modified BWR equation of state fit 
to methane by McCarty (42) was used by Haile et al. (43) to calculate 
viscosities, Murad and Gubbins (44) to calculate thermal conductivities, 
and McCarty (45) to calculate liquid densities. 

Two nonanalytic equations of state for methane developed at the 
National Bureau of Standards have recieved considerable attention: 
METHERM4 by Goodwin (46) and METHERMS by Goodwin (47). 
Several shortcomings of the latter equation have been found by Mollerup 
(48) and from our own work. The fugacity coefficients calculated by 
numerically integrating METHERMS become greater than 1 at low 
temperatures as the triple point is approached. The fugacity coefficient of 
methane should approach 1 at the triple point. Also, the equation becomes 
indefinite as the density approaches zero. The iatter problem has been 
resolved by Goodwin (49) for future use of the equation. The equation of 
state METHERM4 does not suffer from these problems and is known to 
describe the thermodynamic behavior of methane very accurately from 
the triple point of methane up to 700 bars and 500 K. This equation has 
been used extensively by Mollerup (48) and was used in making the new 
calculations presented here. The equation is given below: 

T R  = A + B@(T) + C/TR + DY(p, T )  (z - 1) 
P 

where 

@(T) = TR[l - exp ( - b  - p/T")] 

+(P, T )  = [1 - wln(1 + l / w ) ] ~ ~  
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PRINCIPLE OF CORRESPONDING STATES I625 

u(dR) = a”[ldR - 113 - (dR - 1)3] + d[ ldR - lI3 + (dR - 1)3] 

T R  = TIT‘, d R  = d/dc,  p = d/d, 

and the coefficients A ,  B, C,  and D are represented by power series in 
density. The terms b, a”, a’, p, and 6 are constants. The equation of state 
requires the single-valued function T,(p) for the saturation temperatures. 
This function is given by 

Y(Ts) = U8/3[l + A ,  In (p )  + (p  - 1)F(p)] (37) 
where 

TC/Ts - 1 
y ( T S )  = TClT, - 1 

(dR  - 1) 
U(dR) = 

(d,R - 1) 

and F(p)  is expressed by a power series in density. Auxiliary equations 
for the vapor pressure, saturated liquid density, and saturated vapor 
density as functions of temperature are included in the equation of state 
package, and are most useful when making calculations at saturated 
conditions. The equation of state is nonanalytic at the critical point due to 
the function Y(p, T). This function was designed to give a large increase 
in the constant volume heat capacity upon close approach to the critical 
point, which is consistent with experimental observation. When calculating 
thermodynamic properties which require integrations, such as the con- 
figurational Gibbs free energy, a numerical integration must be used. These 
integrations increase the computation time. Mollerup (48) has decreased 
the computation time while retaining the accuracy of METHERM4 by 
storing thermodynamic properties calculated from METHERM4 in 
tables, and interpolating where necessary. To carry out calculations at 
reduced temperatures less than the triple point of methane, Mollerup (48) 
has extrapolated the equation into the hypothetical liquid and vapor 
regions using thermodynamic data of propane. This extrapolation will 
be used in the low temperature calculations presented here. 

Although the reference substance is most commonly a pure fluid, a 
mixture can also be used as a reference. Chapela-Castaiiares and Leland 
(50) have developed a procedure, based on conformal solution theory, 
for calculating the equilibrium ratios in multicomponent systems from 
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I626 MENTZER, GREENKORN, AND CHAO 

experimental data on binary mixtures. Smoothed binary data for five 
reference systems serve as the basis for performing the calculations. 

PURE FLUID CALCULATIONS 

The thermodynamic properties of pure fluids can be calculated once 
the conformal parameters, and and a means of representing the 
reference substance have been specified. Pure fluid calculations require no 
adjustable parameters. Only the critical properties and acentric factor of 
a fluid need be known. 

Compressi bilitieo 

Gunning (33) calculated the compressibilities of several fluids from 
Eq. (22). The Vennix-Kobayashi equation of state was used to represent 
the vapor phase and the Tait equation was used for the liquid phase of 
methane. The agreement between the calculations and experimental data 
is good for the normal hydrocarbons ethane through heptane. The more 
similar a substance is to the reference, methane, the better the agreement. 

N 

a 427.6 K 
0 510.9 K 

P (otm) 

FIG. 1. The calculated compressibility factors of n-butane compared with the 
data of Sage and Lacey (51). 
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PRINCIPLE OF CORRESPONDING STATES I627 

The errors are greatest where z is very low and where the isotherms have 
the greatest slope, as one would expect. In Fig. 1 our calculations for 
n-butane are compared with the data of Sage and Lacey (51). That the 
results are good for the normal hydrocarbons is not surprising since data 
for these fluids were used in developing the correlation. The calculations 
do, however, attest to the accuracy of the shape factor expressions, 
Eqs. (28) and (29). Gunning (33) also calculated the compressibilities of 
several fluids not used in formulating the shape factor expressions: 
argon, oxygen, nitrogen, propylene, and toluene. Good results were ob- 
tained for all fluids except toluene. These results have been summarized 
by Gunning and Rowlinson (52). 

Phase Behavior at Saturation 

For a pure fluid with vapor and liquid phases in equilibrium, there 
is one degree of freedom. Once the temperature or pressure is set, the state 
of the system is specified. At equilibrium the temperatures, pressures, and 
fugacities in each phase are equal. The fugacity coefficient may be written 

5?cKl 2.:00 2.:w 2400 3.L 3.L 
I/T DEGREES K x 

FIG. 2. Vapor pressure calculations at saturation for pentane, benzene, and 
2,Sdimethylhexane [Timmermans (5611. 
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320- 

w p 280-  

$200- 

\ ’ 240 
W 

f 

a 
5 160- 
50 

120 

in terms of the residual Gibbs energy, which is the difference between 
the configurational Gibbs free energy of the real substance and a perfect 
gas. From Eq. (1 8) : 

0 

A 

- 

- 

In (i), = (g) a 

The residual Gibbs free energy is calculated from the equation of state 
for the reference substance by performing the following integration: 

GOres 
RT, = I:”(%> dP0 (39) 

For a pure fluid the equality of fugacities may also be expressed as an 
equality of fugacity coefficients or of residual Gibbs free energies for each 
phase. 

The saturated liquid volumes of several light fluids, which are the 
principal constitutents of LNG, have been calculated by Mollerup and 
Rowlinson (31) and Mollerup (53, 54). The volumes were calculated for 
the normal hydrocarbons ethane through pentane, isobutane, nitrogen, 

360, 
PENTANE 
BENZENE 

2.5-DIMETHYLHEXANE 

% I  

L 
8900 200 

TEMPERATURE DEGREES K 

FIG. 3. Liquid molar volume calculations at saturation for pentane, benzene, 
and 2,5-dimethylhexane [Timmermans (56)l. 
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PRINCIPLE OF CORRESPONDING STATES I629 

and carbon dioxide by specifying the temperature. The average absolute 
relative deviations for the fluids ethane, propane, butane, and nitrogen 
are, respectively, 0.05,0.04,0.40, and 0.37 % (Mollerup, 54). The deviations 
are largest near the critical point, as one would expect. McCarty (45) used 
the PCS to correlate the saturated liquid densities of ethane, propane, 
butane, isobutane, and nitrogen to within 0.01 %. Both the temperature 
and pressure were specified in the calculations. The numerical constants 
in the shape factor equations were redetermined, and the acentric factor 
and critical compressibility of each fluid were estimated from experimental 
data taken at the National Bureau of Standards and a least squares 
estimation technique. Calculations have been extended to higher molecular 
weight hydrocarbons (C,,) by Mentzer et al. (55). In Figs. 2, 3, and 4 the 
pressures, liquid molar volumes, and vapor molar volumes are shown as 
a function of temperature for pentane, benzene, and 2,Sdimethylhexane. 
It is not surprising that the calculations for pentane are good, since data 
for pentane were used in developing the shape factor expressions. 
However, that these expressions permit the accurate determination of 
vapor-liquid equilibrium (VLE) for other fluids, such as benzene and 

FIG 4. Vapor molar volume calculations at saturation for pentane, benzene, 
and 2,5-dimethylhexane [Timmermans (56)l. 
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I630 MENTZER, GREENKORN, AND CHAO 

2,5-dimethylhexane, indicates the general nature of the shape factor expres- 
sions. The VLE calculations for several fluids are summarized in Table 1. 
The calculations were carried out to a reduced temperature of 0.99, if the 
data were available. The calculations are surprisingly good considering 
the differences in size and shape with those of methane, the reference. 

TABLE 1 
Pure Fluid Calculations at Saturation for Nonpolar Compounds 

No. of 
data Prop- 

System Trange (K) points erty AAPD" BIAS' Ref. 
- 

Pentane, C5H12 303-463 
303463 
303463 

Benzene, C6H6 273-553 
273-553 
273-553 

Cyclohexane, 333-553 
CsHi2 

3 33-55 3 
353-553 

C6H14 273-493 
273-493 
273493 

Heptane, C7H16 273-533 

2,3-Dimethylbutane, 

273-533 
273-533 

Octane, CSHI8 303-563 
303-563 
303-563 

2,5-Dimethylhexane, 
CI~HIB 283-543 

283-543 
283-543 

Decane, CloHzz 373-618 
373-618 
618 

Diphenylmethane, 
CinHiz 491-700 

17 P 0.5 0.3 
17 V' 0.7 0.1 
17 V" 2.6 2.4 
29 P 2.3 1.6 
29 V' 1.6 1.3 
29 V" 3.6 1.3 
22 P 1.3 -0.9 

22 V' 2.1 -2.1 
20 V" 5.3 4.5 

23 P 1.1 0.6 

23 V" 2.8 0.5 
27 P 1.6 0.0 
27 V' 0.9 0.1 
27 V" 4.7 2.8 
27 P 2.5 0.3 
27 V' 1.3 0.6 
27 V u  7.0 3.0 

23 V' 0.1 -0.7 

27 P 3.0 1.5 
27 V' 0.8 -0.6 
27 V u  7.3 5.4 
28 P 4.0 -3.6 
28 V' 2.8 -2.5 
1 V" 4.4 4.4 

26 P 1.1 -0.4 

Timmermans (56) 
I, N 

/I ,I 

I, I, 

I1 11 

/I N 

API 44 (57) 
International 

Critical Tables (58) 
I1 I, 

,, ,, 

Timmermans (56) 
/I N 

I, ,I 

,, N 

I/ // 

I, I/ 

I, I/ 

/I /I 

I, ,, 

N n 

I, I, 

,, ,I 

API 44 (57) 
I, /I I1 

I1 I, I, 

Timmermans (56) 
Simnick et al. (59) 

~ 

1 N predicted - experimental1 
experimental N I = I  I 

predicted - experimental 

loo% "AAPD = - C 1 
*BIAS = zIgl ( experimental 
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PRINCIPLE OF CORRESPONDING STATES 1631 

As previously mentioned, pure fluid calculations require no adjustable 
parameters. Various schemes, however, have been proposed to improve 
the calculations by expressing the acentric factor as a function of tem- 
perature. Gunning and Rowlinson (52) adjusted the acentric factor at 
each temperature to fit the known vapor pressures of each pure fluid in 
their VLE calculations. This procedure, however, often leads to large 
errors in the prediction of pure fluid densities. Singh and Teja (60) devel- 
oped generalized linear equations for the temperature dependence of the 
acentric factors for the normal alkanes from liquid density data. Although 
the liquid density calculations are improved, large errors occur when 
vapor pressures or vapor densities are calculated. It has been our experi- 
ence that these functions do not improve the accuracy of saturated liquid 
density calculations for fluids other than the normal alkanes. If both the 
vapor pressure and density calculations are to be improved, it is essential 
that the temperature dependence of the acentric factor be based on both 
measurements. In the work of Mollerup and Rowlinson (31) the acentric 
factor was chosen to give a good fit of both the saturation pressure and 
density when the saturation temperature is specified, and an equally good 
fit of the saturation temperature and density when the saturation pressure 
is specified. For carbon dioxide and ethane, elliptical equations were 
developed to express the temperature dependence of the acentric factors. 
For all other fluids a constant value of the acentric factor was chosen. 
Although the temperature-dependent acentric factors for ethane and 
carbon dioxide improve the pure fluid calculations, they do not markedly 
affect mixture calculations. In our work we have chosen to use a constant 
value for the acentric factor for all fluids as given by the original definition 
of Pitzer et al. (4): 

w = - 1 - log PR at T R  = 0.7 (40) 
It was mentioned earlier that polar fluids can be shown to obey the 

same form of the PCS as nonpolar fluids when the dipole-dipole interaction 
term in the potential energy expression is free-energy averaged. This 
assumes, however, that the fluids are not highly polar and do not associate. 
Although the shape factor equations were not developed for polar fluids, 
the phase behavior of several polar fluids at saturation was calculated 
using these equations. The results are summarized in Table 2. For polar 
fluids which do not associate, such as ethers, ketones, and sulfur com- 
pounds, the calculations are good. The predictions for amines are sur- 
prisingly good, since all but tertiary amines are known to hydrogen bond. 
The calculations were found to be poor for acetone, heavy ketones, and 
alcohols. It is not surprising that the calculations were in poor agreement 
with experiment for alcohols since they are highly polar and hydrogen 
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I632 MENTZER, GREENKORN, AND CHAO 

TABLE 2 

Pure Fluid Calculations at Saturation for Polar Compounds 

No. of 
data Prop- 

System T range (K) points erty AAPD BIAS Ref. 

Dimethyl ether, 
CzH60 

Diethyl ether, 
GHioO 

2-Pentanone, 
CSHio0 

2-Nonanone, 
C&i& 

Hydrogen sulfide, 
H2S 

Ethyl mercaptan, 
CzHfiS 

Ethyl amine, 
C Z H ~ N  

Quinoline, CgH7N 

m-Cresol, C ~ H B O  

Carbon tetra- 
chloride, CCI4 

Chlorobenzene, 
C,H,CI 

Carbon dioxide, 
coz 

250-400 

250400 
250400 
308-467 

308467 
308-467 
283-373 

283-373 
343-433 

343-433 
284-373 

284-373 
284-373 
308-499 

308-499 
289-456 

41 1-420 
302-457 
431-724 
431-511 
388-662 

388-662 
253-556 

323-553 
343-553 
273-632 

273-632 
443-543 
218-304 

218-304 
218-304 

19 

19 
19 
19 

19 
19 
10 

10 
10 

10 
13 

13 
13 
21 

21 
11 

2 
11 
20 
3 

19 

19 
31 

23 
21 
30 

30 
11 
19 

19 
19 

P 

V' 
V" 
P 

V' 
V" 
P 

V' 
P 

V' 
P 

V' 
V" 
P 

V' 
P 

V' 
V" 
P 
V' 
P 

V' 
P 

V' 
V" 
P 

V' 
V" 
P 

V' 
V" 

2.8 

2.5 
7.3 
1.0 

1.9 
9.2 
0.9 

0.4 
3.8 

3.1 
1 .o 

3.9 
7.0 
1.3 

2.9 
2.8 

0.1 
9.3 
2.3 
1.1 
2.9 

2.3 
2.6 

0.9 
3.1 
3.5 

2.9 
1.2 
1.9 

3.3 
7.7 

2.8 

-2.4 
3.0 

-0.7 

1 .o 
9.2 
0.9 

0.4 
-3.8 

-3.1 
-1.0 

-3.8 
7.0 

-0.9 

0.5 
-1.2 

0.0 
6.7 

-2.2 
-1.1 
-0.4 

-2.3 
1.6 

0.3 
3.1 
3.0 

2.2 
1.0 

-1.9 

-3.3 
-7.7 

International Critical 
Tables (58) 

N ,, 
N ,, 
N n 

,I I, 

I, N 

Meyer and 
Wagner (61) 

N I/ 

I/ N 

N N 

Sage and Lacey (62) 

N I, N 

N N I, 

International Critical 
Tables (58) 

N I, 

Timmermans (56) 

I, ,, 
I 

Sebastian et al. (63) 
Lumdsen (64) 
Simnick et al. (65); 

TRC (66) 
TRC (66) 
Timmermans (56) 

N ,, 
N n 

I, n 

N I, 

I n 

Din (67) 

N N 

N N 
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bond. Calculations for several additional polar fluids have been sum- 
marized by Mentzer et al. (55). Although the calculated properties of many 
polar fluids are in reasonable agreement with experimental data, little 
work has been done in this area. The calculations could undoubtedly be 
improved if a reduced dipole dependence were added to the shape factor 
expressions. 

Compressed Liquid Densities 

The density of a compressed liquid is calculated by specifying both 
the temperature and pressure. Mollerup (53, 54) has compared liquid 
density calculations off the saturation curve with experimental data for 
several light substances. The accuracy is comparable to that found for the 
liquid density calculations at saturation conditions. 

Enthalpies 

The calculation of enthalpies requires a temperature derivative of the 
free energy, and therefore some loss in accuracy is expected. Most inves- 
tigators have calculated enthalpies through the use of first-order shape 
factors and their temperature derivatives, rather than using second-order 
shape factors. The working equation is Eq. (96), which will be discussed 
latter with the mixture calculations. Fisher and Leland (34) calculated 
residual enthalpies, ( H  - H*),  for nitrogen and pentane on a single iso- 
therm at various pressures. For nitrogen at 255 K the average deviation 
between the calculations and experimental data was 2.8 Btu/lb over a 
pressure range of 70-270 atm. The pentane calculations differed from the 
data by an average of -0.7 Btu/lb at 344 K over a pressure range of 135 
to 205 atm. Gunning (33) calculated the configurational enthalpies of 
argon and pentane. The calculated configurational enthalpies of argon 
are in excellent agreement with experimental data from 20 to 300 atm. 
The results for pentane are good, except near the critical region. 
Mollerup (29,48) has calculated the residual enthalpies of ethane and 
propane. In Table 3 the calculated residual enthalpies of n-butane are 
compared with the values presented by Sage and Lacey (51). The calcula- 
tions are in good agreement with the literature values. 

Yuan et al. (28) used the conformal parameters determined from 
configurational Gibbs energy and molar volume data to calculate con- 
figurational enthalpies. That these parameters also accurately predict pure 
fluid enthalpies attests to the validity of conformal solution theory. 
Enthalpies were calculated for carbon tetrachloride, hexane, and heptane 
at 25, 50, and 75°C with an average absolute relative error of 0.8 %, using 
benzene as the reference fluid. 
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TABLE 3 

Comparison of the Calculated Residual Enthalpies of n-Butane with the 
Values Reported by Sage and Lacey (51) 

- ( H  - H * ) ,  (Jimole) 

427.6 K 460.9 K 510.9 K 

P (atm) Expt CaIc Expt Calc Expt Calc 

13.6 1,662 
27.2 3,887 
40.8 12,745 
54.4 14,482 
68.1 15,031 
85.1 15,369 

102.1 15,566 
119.1 15,686 
136.1 15,760 
153.1 15,808 
170.1 15,835 
187.1 15,846 
204.1 15,846 
238.2 15,813 
272.2 15,752 

1,581 1,424 
3,823 3,130 

13,279 5,269 
14,468 8,160 
14,900 11,671 
15,225 12,966 
15,414 13,626 
15,549 13,973 
15,643 14,212 
15,697 14,382 
15,724 14,505 
15,738 14,593 
15,724 14,654 
15,697 14,713 
15,616 14,721 

1,324 1,169 
2,945 2,393 
5,106 3,706 
8,430 5,142 

11,523 6,651 
12,793 8,419 
13,374 9,880 
13,739 10,859 
13,968 11,470 
14,130 11,886 
14,252 12,180 
14,333 12,398 
14,387 12,561 
14,455 12,784 
14,441 12,930 

1,040 
2,202 
3,512 
4,971 
6,538 
8,430 
9,835 

10,601 
11,307 
11,699 
11,982 
12,199 
12,361 
12,563 
12,685 

Joule-Thomson Coefficients 

The isothermal and adiabatic Joule-Thomson coefficients are defined as 

= (g)T 
respectively. This type of calculation requires an additional differentation 
of the Gibbs energy and is thus a most rigid test of the calculation proce- 
dure. Experimental Joule-Thomson coefficient data are not plentiful and 
are often inconsistent. Gunning (33) calculated Joule-Thomson coefficients 
numerically for carbon dioxide, propane, butane, and pentane, and 
compared them with experimental data. The agreement between the 
calculations and data is mixed. The calculated adiabatic Joule-Thomson 
coefficients for carbon dioxide were found to be in good agreement with 
the measurements of Roebuck et al. (68), which are thought to be reliable. 
The results agree to within 5 %, except at low pressures. The computed 
isothermal Joule-Thomson coefficients of carbon dioxide were also found 
to be in good agreement with experimental data. 
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PRINCIPLE OF CORRESPONDING STATES I635 

Transport Properties 

Haile et al. (43) correlated the viscosities of light hydrocarbons and 
simple inorganic gases by determining shape factors from compressibility 
and viscosity data. This method is similar in principle to that used by 
Yuan et al. (28) and Palmer et al. (35) in that the conformal parameters 
are determined from pure fluid data for use in correlating mixture data. 
The procedure has not been generalized, since pure fluid data are needed 
to determine the shape factors for each fluid. 

Thermal conductivities of dense fluids were correlated by Murad and 
Gubbins (44) by determining the shape factors needed to equate the com- 
pressibilities and reduced thermal conductivities of various fluids with 
those of methane, the reference. Generalized shape factor correlations 
were developed for use in calculating the thermal conductivities of hydro- 
carbons up to hexane, carbon dioxide, and nitrogen. The calculations are 
stated to be accurate to 4%, which is the usual experimental uncertainty 
for thermal conductivities. In Fig. 5 the thermal conductivities of hexane 
calculated from the correlation are compared with the data of Tsederberg 
(69). The agreement is seen to be quite good. 

M I X T U R E  MODELS 

The PCS can be utilized to calculate mixture properties. The pure fluid 
framework is applied to mixtures through the use of mixing rules for the 
conformal parameters. Reid and Leland (70) have shown how several of 
the commonly used mixing rules can be obtained by making various 

115 
413 

453 

493 

P(bor1 

FIG. 5 .  Thermal conductivity calculations by Murad and Gubbins (44) for 
hexane compared with data from Tsederberg (69). 
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assumptions about unlike pair interactions and the radial distribution 
function. Mixing rules have been derived for so-called “random mixtures” 
where all the molecular species are of the same size, and therefore the 
probability of finding a molecule of one species at a given distance from 
a neighbor is the same for all species (Rowlinson, 17). In practice, however, 
the components of a mixture have different sizes and shapes, and therefore 
do not mix randomly. 

The most successful mixing rules, and the ones for which there are the 
best theoretical arguments, are those known as the van der Waals mixing 
rules. This model is in no way dependent on the validity of the van der 
Waals equation of state. The van der Waals one-fluid model has been 
shown to be superior to the random mixture model for mixtures of mole- 
cules of different sizes (Leland et al., 71). With this model a pseudopure 
fluid, denoted by x, is defined whose Gibbs free energy differs from that of 
the mixture only by the ideal energy change of mixing. The configurational 
Gibbs free energy of the mixture can therefore be written as 

GJT, P, XI = Gx[T, P> XI + R T C  xa In ( X J  

Gx = f x , o G o [ T / f x , o ,  P ~ x , o ~ x , o l  - RTln @X,O) 

(43) 
a 

where 

(44) 
The latter equation is written for the pseudofluid x and is obtained from 
Eq. (23) and the relation G = A + p V .  In terms of the conformal parame- 
ters, the mixing rules are 

hx,o = C C XaXfi’aF,o 

fx,oh.x,o = C C xaxfiLfi,ohaP,o 

(45) 

(46) 

a P  

a P  

The unlike pair conformal parameters are usually represented as follows : 

h p , O  = icrp(faa,ofpg,o)t’z (47) 

where Cap and ‘lap, are binary interaction parameters which must be deter- 
mined from experimental data. They are assumed to be independent of 
temperature, pressure, and composition. If nothing is known of a binary 
mixture, cap and qaP can either be estimated from those of similar mixtures 
or set equal to unity by adopting the Lorentz-Berthelot assumption. 
It is important to note that only binary parameters appear in Eqs. (45) 
and (46), and thus they are all that are needed for multicomponent mixture 
calculations. 
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PRINCIPLE OF CORRESPONDING STATES I637 

Leland et al. (72) developed a van der Waals two-fluid model in an 
attempt to account for departures from randomness due to differences 
in size and intermolecular energy of the species. Instead of replacing the 
entire mixture with a single hypothetical pure fluid, each component of the 
mixture is replaced by a pseudocomponent and then assumed to mix ideally 
to form the mixture. The two-fluid model may be more appropriately 
called a multifluid model, since each real component is replaced by an 
equivalent component. The configurational Gibbs free energy may thus 
be written (Rowlinson and Watson, 27) : 

GAT, P, X I  = C x.AG,z’[T, P, xaI + RTln (xa)> (49) 
a 

where 

Ga’[T, P, xal = fa ,oGo - - - RTln (4,0) (50) 
K 0 3 ? , . 1  

The van der Waals mixing rules become for the two-fluid model: 

The unlike pair interactions may be represented by Eqs. (47) and (48), 
as for the one-fluid model. Difficulties arise when calculating the thermo- 
dynamic properties of a mixture whose components have very different 
critical temperatures. In this instance the component with the lower critical 
temperature may have a reduced temperature larger than unity, such that 
no liquid state can exist (Mollerup and Fredenslund, 73). Fisher and 
Leland (36) have described a variation of this two-fluid model. Instead 
of replacing each component in a mixture with a pseudocomponent, each 
phase of a mixture is split into a light and heavy hypothetical fluid. The 
thermodynamic properties of each pseudofluid are then calculated using 
two different reference substances. The thermodynamic properties of 
a phase are obtained by combining the properties of the two pseudofluids 
weighted by their respective mole fractions. 

There appears to be some confusion in the literature with respect to 
the term “two-fluid” as applied to the calculation of thermodynamic 
properties. In the preceding paragraph a two-fluid mixture model is 
described for calculating the properties of mixtures. The conformal 
parameters for each pseudocomponent, or hypothetical fluid, are given by 
Eqs. (51) and (52), and therefore yield different reduced temperatures and 
volumes for each pseudocomponent or hypothetical fluid. Yesavage (74) 
and Johnson and Clover (75) have developed a two-fluid method of calcu- 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1638 MENTZER, GREENKORN, AND CHAO 

lating thermodynamic properties which is applicable to both pure fluids 
and mixtures. By this method a thermodynamic property is calculated 
with two reference fluids using the same reduced variables. The two results 
are then each weighted by a factor which is a function of a characteristic 
parameter of the two reference substances and fluid of interest (i.e., o), and 
linearly combined to give the property for the system of interest. Starling 
(76) and Chapela-Castaiiares and Leland (50) have also obtained good 
results using this method. 

For mixture calculations the shape factors have a slight composition 
dependence. The composition dependence accounts for the different 
environment which a molecule is subjected to in a mixture as compared 
to a pure fluid. The arguments in the shape factor equations are: 

These arguments are necessary if the calculations are to be independent of 
the reference substance used. For pure fluids they become TzR = Ta/T,' 
and VaR = Va/Vac. It is important to note that the quantities and 
(ppra,o in pure fluid calculations are not the same as the pure fluid contribu- 
tions Baa,O and 4aa,0 in the van der Waals mixing rules. Mixture calculations 
require an iterative solution procedure. In practice, the iterations are found 
to converge rapidly. Leach et al. (26) have developed an approximation 
for the arguments of the shape factors which eliminates the iteration 
procedure. 

Wheeler and Smith (77) suggested the following mixing rules for the 
conformal parameters : 

where a general weighting function is defined as 

The terms Sa and S,  are measures of the size and shape of molecules a 
and P, while the quantity Z(M, p) is a measure of the strength of interaction 
between these two molecules relative to other pairs. In general, the 
size-shape and interaction effects for each molecule and binary pair will 
be different in Eqs. (55) and (56). If the S's and 1's are set to unity, the 
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PRINCIPLE OF CORRESPONDING STATES I639 

weighting factors take on the random mixing form. If the S’s and Z’s are 
set to unity for wh, and the S’s are set to unity while the Z’s are set equal to 
ha,, ha,, and h,, for w f ,  Eqs. (55) and (56) reduce to the van der Waals 
one-fluid model. 

Several investigators have sought to modify the van der Waals mixing 
rule for fx,o. Various values for the exponent 6 on the weighting factor h 
have been recommended: 

Leland and Chappelear (12) have shown that the conventional van der 
Waals mixing rule (6 = 1) follows from certain assumptions concerning 
the radial distribution function of a pair of molecules in a mixture. 
When the critical volumes of the two components are equal, the exponent 6 
is of no importance and may thus be set to zero. Plocker et al. (78) empiri- 
cally found a value of 0.25 to be best for mixtures of molecules which 
differ appreciably in size. Teja (79) compared the critical state predictions 
of binary mixtures using values of 6 equal to 0.0,0.25, and 1 .O. A value of 
unity was found to be best. In our work on equilibrium ratios and excess 
properties we also chose to use a value of unity. 

MIXTURE CALC U LATlO N S  

The thermodynamic properties of mixtures can be calculated once 
mixing rules for the conformal parameters have been specified. Binary 
interaction parameters may or may not be used to represent the unlike 
pair interactions, as in Eqs. (47) and (48), depending on the nonideality 
of the mixture and the desired accuracy. 

Compressibilities 

state for the reference fluid by 
The compressibility of a mixture is calculated from the equation of 

Z(TY V) = ZO(T/ fX ,O’  ~ / h x , o )  (59) 
Fisher and Leland (34) calculated the compressibilities of hydrocarbon 
mixtures with the van der Waals one-fluid model. Equation (47), with 
cab set to unity, was used to represent&,,,, while ha,,o was calculated from 

(60) 
1 

h n , , ~  = j ( h a a , o  + ~ B B , O )  

In this equation the volumes are thought of as being additive instead of 
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1640 MENTZER, GREENKORN, AND CHAO 

the effective molecular diameters as in Eq. (48). The compressibilities of 
methane + propane mixtures were predicted with an average absolute 
error of 1.0% on a 100°F isotherm over a pressure range of 200 to 
2,500 psia. For methane + decane mixtures at the same temperature, and 
pressure from 695 to 3,000 psia the predicted compressibilities agreed 
with experimental data to within 3.1 %. The poorer agreement for the 
latter system is to be expected due to the greater dissimilarity between 
the components of the mixture. Gunning (33) calculated the compressi- 
bilities of several mixtures with one interaction parameter, cup, used to 
characterize each binary pair. Compressibilities were calculated within 
1.0% for the mixtures methane + hydrogen sulfide, methane + carbon 
dioxide, and air. The agreement was poorer for the system toluene + 
hexane. Comparisons between the compressibilities of air using the one- 
fluid and two-fluid van der Waals models showed the latter to be no more 
accurate than the former, except possibly at low temperatures. 

Compressed Liquid Densities 

temperature, pressure, and composition by 
The density of a compressed mixture is calculated from the specified 

The formulation of the PCS considered here is well-suited for the calcula- 
tion of densities of mixtures of light components. Mollerup has demon- 
strated that the densities of LNG, LPG, and related mixtures can be 
calculated with an accuracy of about 0.2% (Mollerup and Rowlinson, 
31; Mollerup, 53, 54; Mollerup et al., 80). This is more accurate than any 
other existing correlation. Mixtures were described by the van der Waals 
one-fluid model and Eqs. (47) and (48). Calculation of liquid densities is 
very sensitive to the parameter vua. The procedure has been applied with 
good results to a reduced temperature of 0.3. It is not surprising that this 
method is well-suited for the prediction of the densities of mixtures of 
light molecules, since methane is the reference fluid. The advantage over 
other methods, however, is that it can handle heavier hydrocarbons and 
nitrogen very well. This method also covers a larger temperature, pres- 
sure, and composition range than most other methods. 

Teja and Rice (40) fit the densities of binary mixtures of benzene with 
n-hexane, n-heptane, n-decane, and n-hexadecane at  25 and 50°C with 
one interaction parameter, cup, per binary pair. The average absolute 
deviation ranged from 0.4 % for benzene + n-heptane mixtures to 1.8 % 
for benzene + n-hexadecane mixtures. These results are not as accurate 
as those for mixtures of lighter molecules. Perhaps the calculations could 
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PRINCIPLE OF CORRESPONDING STATES 1641 

be improved if the interaction parameter qafl instead of cap was used to 
characterize each binary interaction. 

Vapor-Liquid Equilibrium 

Two phases are at equilibrium when the temperature and pressure in 
each phase are the same, and the fugacity of each component in each phase 
is the same. According to the Gibbs phase rule, for a binary mixture with 
a vapor and a liquid phase there are two degrees of freedom. Thus the state 
of the system is fixed once two variables are specified such as the tempera- 
ture and pressure, the temperature and composition of one phase, etc. 

The equilibrium ratio of component a, K ,  = yalxa, is obtained as follows 
(Mollerup, 29) : 

An expression for the residual Gibbs energy of component a in a mixture 
is found by subtracting the Gibbs energy of component a in a perfect gas 
mixture from the Gibbs energy of component a in a real mixture. Both of 
these terms are partial molar quantities which can be written in terms of 
the configurational Gibbs energy as follows: 

where the differential operator (DIDx,) denotes a differentiation with 
respect to xu where all the other mole fractions are held constant 
(Rowlinson, 17). This operator is necessary because the mole fractions in 
a mixture are not independent. The residual Gibbs energy of component 
c1 in either phase of the mixture is found to be 

G,"" = G, + (x,) DGx - 7 x  (") -RTln(&) (65) 
T , P  ' D x f l  T , P  

The configurational Gibbs energy of the pseudofluid, G,, is written in 
terms of the residual Gibbs energy of the reference fluid by combining 
Eq. (44) with the definition of the residual Gibbs free energy: 

The quantity Gores is determined from the PVTproperties of the reference 
substance by Eq. (39). The derivative of G, with respect to composition, 
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I642 MENTZER, GREENKORN, AND CHAO 

required in Eq. (65), is calculated from Eq. (44): 

Dfx,O + (z0 - (67) 
K ) T , p  = ”( %)T,p  T *P 

where Uo is the configurational energy of the reference substance. The 
working equations for calculating equilibrium ratios are in a different 
form than those used by Leach et al. (26), but can be shown to be equiva- 
lent. The derivatives of the conformal parameters with respect to composi- 
tion for the one-fluid van der Waals mixing rules have been determined 
from Eqs. (45) and (46) by Rowlinson and Watson (27) and Mollerup (46): 

(69) 

To determine the derivatives of the unlike pair conformal parameters with 
respect to composition, we write by analogy with Eqs. (53) and (54): 

These equations are only used to determine partial derivatives. The 
quantities and hap , ,  for use in the combining rules are determined 
from Eqs. (47) and (48). Applying the differential operator to Eqs. (70) 
and (71): 

r e ) T , p  = er%)T,p (73) 

The derivatives of the shape factors with respect to composition are found 
by the chain rule of partial differentiation through the use of the independ- 
ent variables as written in Eqs. (70) and (71): 
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(75) 
To determine the derivatives of the unlike pair shape factors, the expres- 
sions for the shape factors, Eqs. (28) and (29), are written in terms of the 
unlike pair quantities T$,o, V$,o, map, and z,,', and differentiated. The 
arguments of these derivatives, and V$,o, are determined from 
Eqs. (70) and (71) by iteration, since they are composition dependent. 
To evaluate O,,,, and we assume that 

map = (ma + ~ p ) / z  

zapc = (z; + Zi ) /2  

(76) 

(77) 
It is important to note that O,,,, and +ap,o are determined from Eqs. (70) 
and (71) so that the independent variables of these shape factors will be 
known and the derivatives of the unlike pair shape factors evaluated. 
Finally, the derivatives (D  V$,o/Dxj)T,p and (DTfp,o/Dxj)T,,  must be 
determined. 

DTS,O DOap.0 
( F ) T , p  T$,O =; ( F ) T , p  cap, 0 - (e)l',p f x , o  (79) 

In the articles by Rowlinson and Watson (27) and Mollerup (48), the last 
term in Eq. (78) was omitted (Mollerup, 82). The equation is correct 
in the original work of Leach et al. (26), although the nomenclature is 
different. In practice, the added quantity is of little importance numerically, 
except for mixtures of very dissimilar molecules at high temperatures 
and pressures. For some systems the interaction parameters presented by 
MolIerup (48) and Mentzer et al. (55) may need to be adjusted if they are 
to be used in a revised program. The derivative appearing in this term is 
evaluated from 

Equations (68), (69), (72)-(75), and (78)-(80) must be solved simultaneously 
for (Dh,,o/Dxj)T,p and (Dfx,,/Dxj)r,p. The calculation of K-values is 
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complex and must be performed on a computer. The flow diagram of a 
computer program for carrying out the calculations has been presented by 
Mollerup and Rowlinson (31). Computer programs have been developed 
as a part of various studies: program “LNG” by J. Mollerup, and program 
“PROPERTY” by T. W. Leland Jr. and his colleagues. If the van der 
Waals two-fluid model is to be used, equations similar to those presented 
above, but more complex, must be solved (Rowlinson and Watson, 27; 
and Mollerup and Fredenslund, 73). 

Equilibrium ratios for binary mixtures of methane with several diffcrent 
paraffins have been predicted by Chappelear et al. (82), Leach et al. (26), 
and Fisher et al. (83). The van der Waals one-fluid model was used, along 
with Eqs. (47) and (60), to describe the mixture. No binary interaction 
parameters were used in the calculations. Good results were obtained 
even into the retrograde region. Fisher et al. (83) predicted K-values for 
the ternary mixture methane + ethane + propane and for a multicom- 
ponent natural gas mixture. The deviations from the experimental data 
were generally found to be greatest for the heavy components. At low 
temperatures the one-fluid mixture model was found to be a poor approxi- 
mation. Leach (23) developed an empirical expression to correct the 
conformal parameterfx,o at  low temperatures. A two-fluid van der Waals 
model has also been employed to improve the VLE predictions at low 
reduced temperatures (TR < 0.6). Watson and Rowlinson (84) calculated 
the VLE behavior for the system nitrogen + oxygen + argon and its 
associated binaries with both the one-fluid and two-fluid van der Waals 
models. A single reference substance, methane, was used and one interac- 
tion parameter, CEO, was employed to represent each pair interaction. They 
found the two-fluid model to be marginally the best. Upon further exami- 
nation the two-fluid model was found to be no more accurate than the 
one-fluid model, except at low temperatures and high densities (Gunning 
and Rowlinson, 52). Little has been reported on the use of the two-fluid 
model with two different reference substances. Fisher and Leland (36) 
have used the two-fluid van der Waals model with methane and pentane 
as the reference substances. Each phase of the mixture was split into a 
light hypothetical fluid and a heavy hypothetical fluid. Thermodynamic 
properties of the light phase are then calculated with the methane reference 
and properties of the heavy phase with the pentane reference, This proce- 
dure follows from the observation that it is best to use a reference substance 
as similar to the fluid of interest as possible. 

Bubble point and dew point calculations were made by Gunning (33) 
for several systems consisting of from two to ten components. Both 
mixtures of relatively small molecules and mixtures in which the com- 
ponents are different in size and shape were examined. The van der Waals 
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PRINCIPLE OF CORRESPONDING STATES I645 

one-fluid model was used, and the unlike pair interactions were represented 
by Eqs. (47) and (48), with qmS set to unity. The values of o were adjusted 
at each temperature to fit the known vapor pressure of each component 
in a mixture. This leads to a good correlation of bubble points or dew 
points, but often results in large deviations for density predictions. For 
mixtures of molecules which are very different in size, Teja (85) found it 
necessary to use an interaction parameter for volume, qZa. 

Mollerup has made extensive calculations on the thermodynamic 
properties of mixtures consisting of light molecules, such as LNG and 
LPG (Mollerup and Rowlinson, 31; Mollerup, 29, 48, 53, 54, 80, 86; 
Mollerup and Fredenslund, 87; Mollerup et al., 88). The van der Waals 
one-fluid model was used to represent each mixture, and two interaction 
parameters were employed to characterize each pair interaction. Values 
for the interaction parameters were determined from bubble point pres- 
sures and liquid densities. Acentric factors were chosen to give a good fit 

I 1  I I  I I 

METHANE 

0*05* 0.5 I PRESSURE 5 ATM 10 50 

FIG. 6 .  The K-value calculations of Mollerup et al. (88) for methane + carbon 
monoxide mixtures compared with the data of Christiansen et al. (89) and 

Sprow and Prausnitz (90). 
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I646 MENTZER, GREENKORN, AND CHAO 

of the PVTbehavior of each pure fluid at saturation. In Fig. 6 the predicted 
equilibrium ratios are shown as a function of pressure for the system 
methane + carbon monoxide. The calculations are accurate both in the 
normal and the critical regions of the phase diagram. Equilibrium ratios 
for the system carbon dioxide + pentane are compared with experimental 
data in Fig. 7. The lighter the components of the mixture are, the more 
accurate the calculations tend to be. For mixtures related to LNG or LPG, 
calculated K-values are generally accurate to within a few percent. In 
Table 4 calculated K-values for the ternary system methane + ethane + 
propane at  213.71 K are compared with experimental data. The calculated 
values in this table are true predictions, since the interaction parameters 
were determined solely from binary data. Saturated liquid densities can 
also be predicted quite accurately. In Table 5 the experimental and 
calculated molar volumes for several LPG mixtures are summarized. The 
correlation predicts LNG densities to within 0.1 % and LPG densities to 
within 0.2 %. An extensive tabulation of the interaction parameters 

PRESSURE, psia 

FIG. 7. Equilibrium ratios for the carbon dioxide + pentane system calculated 
by Mollerup (53) compared with the data of Besserer and Robinson (91): (0) 

40.1°F, (r) 100.2"F, (0) 159.8"F, (0)  220"F, (-) predicted. 
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needed to predict the thermodynamic properties of mixtures containing 
methane, ethane, ethylene, propane, propylene, butane, isobutane, 
pentane, isopentane, nitrogen, carbon monoxide, carbon dioxide, and 
hydrogen sulfide has been presented by Mollerup (48). 

McCarty (45) compared several models for the prediction of LNG 
densities. The models examined were: 

(a) The formulation of the PCS considered here 
(b) The hard sphere model of Rodosevich and Miller (95) 
(c) The cell model of Albright (96) 
(d) The empirical method of Klosek and McKinley (97). 

The PCS was found to be the only correlation which could correlate LNG 
densities to within 0.1 %. He concluded that the PCS has the widest range 
of temperature, pressure, and composition, but is complex to use and is 
sensitive to the values of the interaction parameters. 

The applicability of the PCS to calculate the thermodynamic behavior 
of light components and their mixtures at saturation has been discussed 
extensively in the literature. Very little work, however, has been reported 

PRESSURE ATM 

FIG. 8. K-value of butane versus pressure for the mixture butane-decane 
[Reamer and Sage (98)l. 
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on the use of this procedure to calculate the properties of mixtures of larger 
molecules. Mentzer et al. (55) have carried out bubble point calculations 
on mixtures of methane, carbon dioxide, hydrogen, and hydrogen sulfide 
with various hydrocarbons up to n-hexadecane. The van der Waals one- 
fluid mixture model with two interaction parameters per binary pair 
was used. These parameters were determined to obtain the best agreement 
between calculated and experimental bubble point pressures and equi- 
librium ratios. Liquid density data were not used to determine the interac- 
tion parameters, and q, since little data are available for several of the 
systems under consideration. In Figs. 8 and 9 the calculated equilibrium 
ratios for the system butane + decane are compared with experimental 
data. The calculations are in excellent agreement with the data as the 
critical region is approached. Only at the lowest temperature do the 
calculated K-values of decane begin to deviate from the data. The equi- 
librium ratios for carbon dioxide + heptane mixtures are shown in Figs. 
10 and 11. The calculations do not show quite the correct temperature 
dependence for the K-values of carbon dioxide, while the calculated 
K-values of heptane are in good agreement with the data. The shape factor 

A 410.89 K 

0 444.22 K 

1.0 2.0 5.0 10.0 20.0 50.0 lo2 
PRESSURE ATM 

FIG. 9. K-value of decane versus pressure for the mixture butane-decane 
[Reamer and Sage (98)]. 
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10.0 

A 394.26 K 

eo.0 0 477.21 K 

10.0 
W 
3 s A 5.0 

2.0 

1.0 
1.0 2.0 5.0 10.0 20.0 50.0 IOe 2.0 

PRESSURE ATM 

FIG. 10. K-value of carbon dioxide as a function of pressure for the mixture 
carbon dioxide + heptane [Kalra et al. (99)]. 

expressions for quantum fluids developed by Leach (23) are not convenient 
to use when calculating VLE for mixtures of quantum fluids and hydro- 
carbons. The difficulty arises when cross-term shape factors need to be 
computed in Eqs. (72) and (73). Because of these problems, and since 
the mixtures containing a quantum fluid (hydrogen) were at relatively high 
temperatures, only the hydrocarbon shape factor expressions were used 
to calculate the K-values of mixtures containing hydrogen. Equilibrium 
ratios for the system hydrogen + benzene were calculated and are com- 
pared with experimental data in Figs. 12 and 13. The agreement is quite 
good. A comparison between the VLE calculations and experimental data 
for several binary systems is presented in Table 6 .  Optimum values of the 
interaction parameters are reported. The calculations are most accurate for 
mixtures containing methane or carbon dioxide with paraffins up to about 
n-hexane. Good results are also obtained with heavier substances if they 
have a cyclic molecular structure. In general, the more dissimilar the 
components of the mixture are, the poorer the results. This limitation of 
the procedure is due to the fact that the pure fluid calculations tend to be 
less accurate for the paraffins beyond C7, and the one-fluid model gives 
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PRESSURE ATM 

FIG. 11.  K-value of heptane as a function of pressure for the mixture carbon 
dioxide + heptane [Kalra et al. (99)l. 

a poor representation of mixtures of highly dissimilar components. The 
calculations for hydrogen mixtures are the least accurate. Whereas for 
some systems the calculations are in good agreement with data, for others 
the agreement is quite poor. In Table 7 predicted bubble point pressures 
and K-values for the ternary system methane + butane + decane are 
compared with the experimental data of Reamer et al. (214-216). The 
agreement is satisfactory, considering the dissimilarity of the components. 
Although the binary interaction parameters were determined from bubble 
point pressures and K-values, they can be used to predict other thermo- 
dynamic properties such as densities. In Table 8 the predicted liquid and 
vapor densities for several binary mixtures at saturation are summarized. 
The predicted saturated liquid densities exhibit deviations of a few percent, 
while the saturated vapor densities are not quite as accurate. 

The calculation of azeotropic and critical lines using the PCS formula- 
tion described here has been investigated by Teja and Rowlinson (39) 
and Teja (227). Calculations of this type are a severe test of the PCS due 
to their inherent complexity. Critical and azeotropic states are defined in 
terms of the Helmholtz energy and its derivatives with respect to volume 
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FIG. 12. K-value of hydrogen versus pressure for the mixture hydrogen + 
benzene [Connolly (IOO)]. 

and composition. Critical loci, upper and lower critical end points, and 
azeotropic lines for binary and multicomponent mixtures were calculated 
with generally only one interaction parameter, cZs, per binary pair. The 
agreement between the calculations and experimental data is quantitative 
for mixtures of methane, ethane, propane, and carbon dioxide with the 
n-alkanes up to hexane. The PCS has also been shown to describe the 
behavior of systems where azeotropism occurs in the critical region, such 
as in the system carbon dioxide + ethane (Teja and Kropholler, 118). 
For mixtures of molecules with greater dissimilarity in size and chemical 
type, the calculations exhibit the correct topology of the critical loci only 
in a qualitative manner. Critical states of mixtures containing a polar 
molecule have also been calculated (Teja, 79). The agreement between the 
calculations and experimental data is not quite as good as that for nonpoIar 
mixtures due to errors in the representation of the pure polar fluids. Good 
results have, however, been obtained for the following systems : ammonia 
+ isooctane, ammonia + butane, hydrogen sulfide + ethane, and hydrogen 
sulfide + propane. That the van der Waals one-fluid mixture model 
gives good results for systems containing ammonia is surprising, since 
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Palmer et al. (34 ,  Murad and Gubbins ( 4 4 ,  and Mentzer (119) found these 
missing rules not to hold for mixtures containing a strongly polar 
component. 

Henry’s Constants 

Henry’s constant for substance c1 dissolved in solvent p is defined as 

= lim (5) (81) 
xa+0 

Mollerup and Fredenslund (87) have shown that 
terms of the residual Gibbs energy of solute c1 at infinite dilution by 

may be expressed in 

where cares is given by Eq. (65). Generally Henry’s constants are given at 
the saturation pressure of the solvent. Using values of cua and qKS deter- 
mined from bubble point pressures and liquid density data, Fredenslund 
and Graus (120) predicted Henry’s constants for several systems. Their 
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PRINCIPLE OF CORRESPONDING STATES I659 

results are in excellent agreement with experimental data, as can be seen 
in Table 9. Henry's constants for carbon monoxide in a mixed solvent of 
argon and methane are included in the table. Mollerup et al. (80) calcu- 
lated the Henry's constants as a function of temperature for several binary 
mixtures of nitrogen and an alkane up to pentane. Henry's constants at 
1 atm are known for a few of the systems listed in Table 6 .  Using the 
values of Tua and qaa determined from equilibrium ratios and bubble 
point pressures, Henry's constants were predicted for the following 
binary mixtures : methane + 1-methylnaphthalene, carbon dioxide + 
1 -methylnapthalene, and carbon dioxide + hexadecane. The predictions 
are compared with experimental data in Fig. 14. 

Excess Gibbs Free Energies and Activity Coefficients 

The excess Gibbs free energy of a solution is that free energy in excess 
of that of an ideal solution at the same temperature, pressure, and composi- 
tion. The excess Gibbs free energy can be expressed in terms of total, 
configurational, or residual Gibbs free energies of the mixture and its 
pure components. One can thus write that 

G E [ K  P, XI = G,"'"T, P, XI - x,G,'eS[T, PI (83) 
11 

where 

E + 
0 

I 0 CARBON DlOXlDE+HEXADECANE 
A CARBON DIOXIDE + I - METHYL- L 

2 NAPHTHALENE cn 

300 350 400 450 500 
TEMPERATURE, K 

FIG. 14. Henry's constants as a function of temperature for several binary sys- 
tems whose components differ greatly in size and shape: (0) Chappelow 

and Prausnitz (126), (A) Tremper and Prausnitz (127). 
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MENTZER, GREENKORN, AND CHAO I660 

and 

The quantity G,“, is evaluated from Eq. (65). Activity coefficients are 
related to the excess Gibbs free energy by 

GE = RT xa In ya - 
a 

Differentiating this equation we find that 

Substituting Eq. (83) into Eq. (87), one finds that the activity coefficient 
of component a is obtained by subtracting the residual Gibbs free energy 
of pure fluid a from the residual Gibbs free energy of component a in 
the mixture at the same temperature and pressure (Mollerup and 
Fredenslund, 73) : 

RT In y a  = GareS[[T, p ,  xa] - GareS[[T, p ]  (88) 

Combining Eqs. (65), (84), and (88), the working equation for calculating 
activity coefficients is obtained: 

- f a a , o G o [ T / S , a , o ,  ~ h a a , o l f a , o l  + RTln haa.0 (89) 

Little work has been reported on the calculation of excess free energies 
and activity coefficients using the PCS methodology presented here. The 
calculation of excess properties is a severe test of a solution theory because 
the errors are magnified by the subtraction of numbers of equal orders 
of magnitude, such as in Eq. (83). However, because the shape factors 
are based on fugacity coefficient data (residual Gibbs free energies), 
reasonable estimates of excess free energies are expected for mixtures of 
hydrocarbons, primarily the lighter ones. 

Activity coefficients for the mixtures argon + methane, ethane + 
ethylene, and ethylene + carbon dioxide have been calculated both in 
the normal and critical regions using the PCS (Mollerup and Fredenslund, 
128). The working equations have been presented by Mollerup and 
Fredenslund (73). A simple two-constant equation of state was used to 
calculate the configurational Gibbs energy and its derivatives with respect 
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PRINCIPLE OF CORRESPONDING STATES Iddl 

to temperature and volume. The two equation of state constants were 
determined from data at one isotherm, and then used to predict activity 
coefficients at other temperatures. Although a simple equation of state was 
chosen to express the configurational Gibbs energy and its derivatives, the 
PVT behavior of the reference substance was represented by an equation 
of state given by Leach (23). The van der Waals two-fluid mixture model 
was used, and the unlike pair conformal parameters were given by Eqs. 
(47) and (48). Only one interaction parameter, cup, was used, and values 
for it were obtained from the literature. In the critical region the activity 
coefficients were correlated by the unsymmetric convention to avoid the 
use of hypothetical standard states. The calculated activity coefficients for 
the system argon + nitrogen were found to be in close agreement with the 
data. The agreement for the other two systems was not as good. Also, 
the values of cua were found to be temperature dependent. To avoid the 
errors incurred when experimental data are converted to activity coeffi- 
cients, Mollerup (129) calculated the equilibrium ratios for several simple 
mixtures (argon + nitrogen, methane + carbon monoxide, argon + 

350 1 I I I 

0 298.06 K 
0 313.10 K 
A 328.20 K 

MOLE FRACTION 

FIG. 15. Calculated excess Gibbs free energies for the system benzene (I) + 
cyclohexane as a function of the mole fraction of benzene compared with the 
experimental data of Mentzer (119). The curves represent the calculations with 

= 0.913 and = 1.095. 
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I662 MENTZER, GREENKORN, AND CHAO 

methane, and argon + carbon monoxide) using the same methodology. 
The correlation of K-values on one isotherm yielded two temperature- 
independent equation of state constants which accurately predicted the 
data on other isotherms. This procedure, however, was found to give less 
satisfactory results for systems containing larger molecules. 

We have correlated the activity coefficients and excess Gibbs free 
energies of several binary mixtures of hydrocarbons, with from six to eight 
carbon atoms, using the van der Waals one-fluid model. The configura- 
tional Gibbs energies required in Eqs. (83) and (89) were determined 
directly from the equation of state for the reference (METHERM4). Two 
interaction parameters were used to characterize each binary pair. Calcu- 
lated excess Gibbs energies for the system benzene + cyclohexane are 
compared with the experimental data of Mentzer (119) in Fig. 15. The 
calculated and experimental activity coefficients at 39.95"C are shown in 
Fig. 16. Recalling that data for neither benzene nor cyclohexane were 
used in the evaluation of the shape factors, the calculations are seen to 

2*ol 

0 BENZENE 
0 CYCLOHEXANE 

313.10 K 
0 

> 
t- 
2 
I- 
2 

1.0 
0 .2 .4 .6 .8 

MOLE FRACTION 

0 BENZENE 
0 CYCLOHEXANE 

z w 
0 
LL 
LL 
W 
0 
0 

> 
t- 
2 
I- 
2 

1.0 
0 .2 .4 .6 .8 

MOLE FRACTION 
5 

FIG. 16. Calculated activity coefficients for the system benzene(1) + cyclo- 
hexane as a function of the mole fraction of benzene compared with the data 
of Mentzer (119). The curves represent the calculations with C = 0.973 and 

t] = 1.095. 
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PRINCIPLE OF CORRESPONDING STATES I663 

be quite good. Experience has shown, however, that in general the PCS 
cannot correlate excess Gibbs free energies over a large temperature range 
with two temperature-independent interaction parameters. In Fig. 17 
calculated excess Gibbs energies for the system benzene + n-heptane are 
compared with the experimental data of Werner and Schuberth (230), 
Fu and Lu (131), and Brown (232) at 20.0, 75.0, and 80.0"C, respectively. 
The calculations do not exhibit the correct temperature dependence over 
this larger temperature range. Although the use of temperature-dependent 
interaction parameters would result in better agreement between the 
calculations and data, this remedy to the problem is artificial. At least 
part of the problem lies in the inability of the PCS to precisely predict the 
Gibbs free energies of the pure components (Mentzer, 129). The values of 
[ and t,-, which on a theoretical level should solely reflect the unlike pair 
interactions, in practice are influenced by both the errors in the prediction 
of the pure fluid properties and the unlike pair interactions. The PCS with 
shape factors is only capable of accurately correlating the activity coeffi- 

600 - 
W 
J 
0 
5,500- 
7 

* 
i400- 
z w 

2 300- 
m 
g 200 - 
(3 

0 293.15 K 
0 348.15 K 

A 353.15 K 

0 0  

MOLE FRACTION 

FIG. 17. Calculated excess Gibbs free energies for the system benzene(1) + 
n-heptane as a function of the mole fraction of benzene compared with the data 
of Werner and Schuberth (130) at 293.15 K, Fu and Lu (131) at 348.15 K, and 
Brown (132) at 353.15 K. The curves represent the calculations with C = 0.963 

and 4 = 1.191. 
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I664 MENTZER, GREENKORN, AND CHAO 

cients and excess Gibbs free energies of mixtures of this type over a 
narrow temperature range. 

The PCS with shape factors has been used to correlate excess Gibbs 
energies and activity coefficients for binary mixtures which contain a 
polar component. Preferably the polar components should not associate. 
Calculated excess Gibbs free energies for the system methyl ethyl ketone + 
ethylbenzene from 55.0 to 75.0"C are compared with the experimental 
data of Kraus and Linek (133) in Fig. 18. The activity coefficients at 
65.0"C are shown in Fig. 19. The agreement between the calculations and 
data is quite good. Mentzer (119) found that although the excess free 
energies and activity coefficients of several polar binary mixtures could 
be correlated over a narrow temperature range, quite often the composi- 
tion dependence of the free energies was not correctly represented with 
the one-fluid van der Waals mixing rules. 

Excess Gibbs free energies for mixtures of simple molecules have been 
correlated by Wheeler and Smith (77), Calvin and Smith (134), and Houng 
and Smith (135) using a model based on conformal solution theory. 

2808 

0 328.15 K 
0 338.15 K 
A 348.15 K 

MOLE FRACTION 

FIG. 18. Calculated excess Gibbs free energies for the system methyl ethyl 
ketone(]) + ethylbenzene as a function of the mole fraction of methyl ethyl 
ketone compared with the data of Kraus and Linek (133). The curves represent 

the calculations with = 0.975 and q = 1.058. 
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I- 0 ETHYLBENZENE 
z w u 
LL 
LL 
w 338.15 K 

8 
>- 
k 
L 
I- 
2 

I665 

3 
MOLE FRACTION 

FIG. 19. Calculated activity coefficients for the system methyl ethyl ketoneu) + 
ethylbenzene as a function of the mole fraction of methyl ethyl ketone compared 
with the data of Kraus and Linek (133). The curves represent the calculations 

with 5 = 0.975 and = 1.058. 

While Wheeler and Smith (77) expressed the pure component conformal 
parameters in terms of the critical properties of the fluid of interest and 
reference fluid, the latter two studies found them to vary with temperature 
and used enthalpy and density data for their evaluation. The working 
equation for calculating the excess Gibbs energy was written as a Taylor 
series expansion about the reference substance in terms of the conformal 
parameters. Calvin and Smith (134) and Houng and Smith (135) also 
correlated excess enthalpies and volumes using Taylor series expansions 
as the working equations. The difficulty in using an expression of this 
type is that the conformal parameters must be near unity for the series to 
converge. The reference substance must therefore by quite similar in nature 
to the components of interest, which requires an extensive tabulation of 
physical property data for several reference substances. This procedure 
was improved upon by Yuan et al. (28). The Taylor series expansions were 
abandoned and excess properties were calculated by subtracting the ideal 
solution contribution from the contribution of the mixture-as for the 
excess Gibbs energy in Eq. (83). Excess enthalpies and volumes, as well 
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I666 MENTZER, GREENKORN, AND CHAO 

as Gibbs free energies, were correlated for several mixtures. The procedure 
is similar in nature to that of the shape factor approach. However, the 
pure fluid conformal parameters are not generalized and must be deter- 
mined from data in terms of fugacities and densities. The pure fluid 
contributions to the excess free energy and volume are obtained essentially 
from experimental data. This methodology emphasizes the description of 
the mixture, and results in an excellent correlation of excess properties 
since the pure fluid contributions are known accurately. Yuan et al. (28) 
and Stookey and Smith (136) used the van der Waals one-fluid model to 
correlate the excess properties of mixtures of molecules in the C6 to C, 
boiling range. 

The unlike pair conformal parameters were characterized by Eqs. (47) 
and (48), and the two interaction parameters, cap and qaD, were found to be 
temperature dependent. An Arrhenius-type function was assumed for 
each interaction parameter, resulting in four parameters per binary pair. 
These correlation constants can be determined either from excess free 
energies and volumes or from excess enthalpies and volumes (Stookey and 
Smith, 136). Benzene was primarily used as the reference substance, since 
it is similar in size to the molecules of interest and is often one of the 
components of the mixture. In general, the excess properties were corre- 
lated to within their experimental uncertainty. That the excess enthalpies 
are correlated accurately indicates that the temperature dependence of the 
excess free energies is represented well. Palmer et al. (35) used the same 
procedure to correlate the excess properties of a partially miscible system 
containing a polar compound: acetonitrile + benzene + heptane. The 
van der Waals mixing rules were found not to hold for polar fluids, and 
the general weighting function approach discussed earlier was used. The 
values of S in the weighting functions wJ and w,, were obtained from the 
radius of gyration, and the values of I were determined from an identifiable 
bond model for those molecular pairs with special interactions. An 
Arrhenius-type function was used to express the temperature dependence 
of the interaction parameters, as before. To summarize, this methodology 
is most promising for the correlation of excess properties. Unfortunately, 
the method is not generalized and an excessive amount of pure fluid data 
is required, Hopefully, generalized correlations of the pure fluid conformal 
parameters will be developed such that pure fluid properties can be 
determined with a high degree of accuracy. In comparing this procedure 
with that involving shape factors, one finds that: 

(a) The conformal parameters in the former method do not have a 
composition dependence or density dependence, while the shape 
factors do. 
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PRINCIPLE OF CORRESPONDING STATES I667 

(b) The former procedure uses temperature-dependent interaction 
parameters while the latter does not. 

Enthalpies 

Enthalpies can either be calculated through the use of second-order 
shape factors or via the first-order shape factors and their derivatives 
with respect to temperature. In practice, the latter procedure has been 
used most often, since the shape factor expressions are easily differentiated. 

The residual enthalpy of a mixture is equal to the configurational 
enthalpy minus the configurational enthalpy of a perfect gas: 

Hrnres = H,,, - RT 

= Urn + P V  - RT 

The internal energy and Helmholtz energy are related as follows: 

From Eqs. (49, (46), and the relation G = A + pV, an expression for 
the Helmholtz energy of the mixture is obtained: 

A,[T, V,  x] = AJT, V, x] + R T Z  xu In xu 

AX[T v, XI = fx,oAo[Trx,o~ V/hx,ol - RTln hx,o 

(92) 

(93) 

m 

Combining Eqs. (91) and (92), an expression for Urn in terms of A, is 
obtained : 

The derivative required in Eq. (94) is obtained by differentiating Eq. (93): 

(95) 
where So is the configurational entropy of the reference substance. 
Combining Eqs. (90) and (93)-(95), the working equation for calculating 
residual enthalpies is obtained (Mollerup, 29) : 

H,'eS = - To(%)J + (zo - 1)[1 - ~ ( = ) j  T ah,,, (96) RT RTo 

Residual enthalpies for both pure components and mixtures are calculated 
from this equation. Quite often the enthalpies for mixtures are given in 
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I668 MENTZER, GREENKORN, AND CHAO 

the literature as excess enthalpies. These are calculated from Eq. (96) as 

The derivatives of the conformal parameters with respect to temperature 
at constant volume have been determined by Mollerup (48) in terms of 
the one-fluid van der Waals model: 

The derivatives of the unlike pair conformal parameters with respect to 
temperature are determined from Eqs. (70) and (71): 

The derivatives of the shape factors with respect to temperature are 
determined by the chain rule of partial differentiation : 

The partial derivatives of the unlike pair shape factors with respect to  
reduced volume and temperature are determined as described before- 
from Eqs. (70), (711, (76), and (77). Finally, partial derivatives of the 
reduced volume and temperature with respect to temperature are deter- 
mined from 

Equations (98)-(105) are solved analytically for (dh,,,/aT), and (a?f,,o/aT)u. 
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Residual enthalpies have been calculated for mixtures of low molecular 
weight hydrocarbons by Leach et al. (30), Fisher et al. (83), and Fisher 
and Leland (34) using the van der Waals one-fluid model without any 
binary interaction parameters. The unlike pair conformal parameters 
were represented by Eqs. (47) and (60). For low temperature calculations 
the correction to Eq. (46) developed by Leach (23) was used. The following 
mixtures were studied: methane + propane, methane + pentane, methane 
+ ethane + propane, and a natural gas mixture. The average deviation 
with experimental data was approximately 3 Btu/lb. As one might expect, 
the deviations decrease as the temperature is increased, pressure is de- 
creased, or methane composition is increased. 

Gunning (33) introduced one interaction parameter into the procedure 
for calculating enthalpies through Eq. (47). Equation (48) with set to 
unity was used to express the other unlike pair conformal parameter. 
Calculated configurational enthalpies of air and an equimolar mixture 
of methane and propane were found to be in good agreement with 
experimental data. Excess enthalpies were calculated for the system carbon 
dioxide + nitrogen and found to be in good agreement with experimental 
data except at high pressures where the excess enthalpy rises rapidly. 

Using the binary interaction parameters determined from bubble point 
pressures and liquid densities, Mollerup has calculated the residual 
enthalpies of several mixtures (Mollerup, 29, 48; Mollerup and 
Fredenslund, 87) of light components. Predicted residual enthalpies for 
the system methane + propane and the ternary mixture methane + 
ethane + propane are in excellent agreement with experimental data. In 
Fig. 20 the excess enthalpies calculated by Mollerup (29) for mixtures of 
methane and nitrogen at two different compositions are compared with 
the experimental data of Eijnsbergen and Beenakker (137). The predicted 
enthalpies agree quite well with the experimental data. For mixtures of 
light components (natural gas mixtures), calculated liquid phase enthalpies 
are generally accurate to 1 Btu/lb and vapor phase enthalpies with negli- 
gible error. 

We have calculated the excess enthalpies for several binary mixtures of 
hydrocarbons with from six to eight carbon atoms (Mentzer, 119). Since 
the temperature dependence of the calculated excess Gibbs free energies 
for systems of this type was found to be incorrect, and enthalpies are 
related to the temperature derivative of the Gibbs free energy, accurate 
excess enthalpy predictions are not expected. In Fig. 21 the predicted excess 
enthalpies for the system benzene + cyclohexane are compared with the 
experimental data of Savini et al. (138) and Nicholson (139) at 25.0 and 
9O.O0C, respectively. The binary interaction parameters determined from 
the excess Gibbs free energy data shown in Fig. 15 were used in the 
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I I I I I 

PRESSURE, ATM 

FIG. 20. The excess enthalpy calculations of Mollerup (29) for two mixtures of 
methane and nitrogen at 201.2K compared with the experimental data by 

Eijnsbergen and Beenakker (137). 

calculations. Although the calculations are of the correct order of magni- 
tude, they do not have the correct temperature dependence. The calcula- 
tions are only marginally improved if the interaction parameters are 
chosen so as to give a best fit of the excess enthalpy data. To accurately 
correlate the excess enthalpies at several temperatures, different values of 
Cms and qns must be used to represent each isotherm. The conformal 
solution model developed by Yuan et al. (28) is capable of correlating the 
excess enthalpies for mixtures of this type very accurately. 

Joule-Thomson Coefficients 

The calculation of Joule-Thomson coefficients from the PCS with shape 
factors has been examined by Gunning (33). A finite difference technique 
was used to evaluate the coefficients. Adiabatic Joule-Thomson coefficients 
were calculated for air, and isothermal Joule-Thomson coefficients were 
calculated for the ternary system methane + ethane + nitrogen. The 
predictions were found to be in good agreement with available experi- 
mental data. 

Transport Properties 

Leach et al. (30) have used the shape factor equations and the generalized 
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0 298.15 K 

MOLE FRACTION 

FIG. 21. Calculated excess enthalpies for the system benzene + cyclohexane as 
a function of the mole fraction of benzene compared with the data of Savini 
et al. (138) and Nicholson (139). The interaction parameters were determined 

from excess Gibbs free energy data. 

correlation presented by Hirschfelder et al. (38) to calculate viscosities. 
Shape factors multiplied by the appropriate critical constants and the 
van der Waals mixing rules were used to determine effective intermolecular 
parameters which are required in the correlation. The viscosity of a 
mixture of hydrogen and nitrogen was calculated to within about 1 %. 

Haile et al. (43) and Murad and Gubbins (44) used the van der Waals 
one-fluid model and mixing rules for the reduced mass developed from 
the Enskog dense gas theory to calculate, respectively, the viscosities and 
thermal conductivities of mixtures. In the viscosity calculations one 
unlike pair interaction parameter (cap) was used, while two interaction 
parameters (cap and qap) were required in the thermal conductivity calcula- 
tions. In each of the developments, shape factors are defined which enable 
one to calculate the viscosities and thermal conductivities of pure fluids 
and mixtures from those of a reference, methane. Viscosities were calcu- 
lated for hydrocarbon mixtures and a typical LNG mixture. The standard 
deviation between experimental and calculated values was about 2 % for 
equimolar mixtures. Thermal conductivities of dense gas mixtures were 
calculated to within about +4 %. Both viscosity and thermal conductivity 
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calculations were found to be poor for mixtures containing strongly polar 
compounds. The van der Waals mixing rules do not express the correct 
composition dependence for mixtures of strongly polar molecules. 

CONCLUSION 

The shape factor method of PCS can predict a variety of thermodynamic 
properties of fluids and their mixtures. For pure fluid calculations only 
the critical properties and acentric factor need be known, while for mixture 
calculations at most two interaction parameters are required per binary 
pair. The calculations are best for the lower molecular weight hydro- 
carbons, which are similar to the reference substance, methane. In general, 
the more a molecule deviates in size and shape from that of methane, the 
less accurate the calculations. The thermodynamic behavior of pure polar 
substances which do not associate can also be calculated, although not to 
quite the same accuracy as nonpolar compounds. 

Most thermodynamic properties can be calculated to within their experi- 
mental uncertainty for relatively light molecules and their mixtures, except 
for mixtures containing hydrogen. Liquid densities for mixtures of the 
lower molecular weight hydrocarbons are in excellent agreement with 
experimental data. Equilibrium ratios, enthalpies, and Henry’s constants 
for these mixtures can also be calculated accurately, but the differentiations 
required in the calculations result in a loss of accuracy. As the components 
of the mixture become more dissimilar, the accuracy of the calculations 
decreases. 

The shape factor approach is not well-suited for the correlation of excess 
Gibbs free energies, excess enthalpies, and activity coefficients. Although 
these properties can be calculated fairly well for mixtures of light mole- 
cules, the accuracy decreases with an increase in molecular size. The 
conformal solution approach of Yuan et al. (28) is an excellent model 
for the correlation of excess free energies, enthalpies, and volumes, but 
must be generalized for it to find widespread use. 
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SYMBOLS 

A (configurational) Helmholtz energy 
B second virial coefficient 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



PRINCIPLE OF CORRESPONDING STATES I673 

D 

G 
h 

H 
k 
K 
m 
n 

N 
P 
Q 
r 
R 
S 
T 
U 
U 
V 

Y 

f 

X 

Z 

differentiation in which the mole fractions are treated as independent 
corresponding states parameter or fugacity 
(configurational) Gibbs free energy 
corresponding states parameter or Planck’s constant 
(configurational) enthalpy 
Boltzmann’s constant 
equilibrium ratio 
weight of a molecule 
number of moles 
number of molecules 
pressure 
partition function 
coordinate 
gas constant 
(configurational) entropy 
temperature 
energy of arbitrary configuration 
(configurational) energy 
volume 
mole fraction 
vapor mole fraction 
compressibility 

Greek Letters 

E intermolecular energy 
5 ,  q binary interaction parameters 
8, 4 shape factors 

c characteristic intermolecular distance 
o acentric factor 
A thermal conductivity 

Subscripts 

a, p, i, j components 
m mixture 
0 reference substance 
s saturated 
t liquid triple point 

x pseudofluid 
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Superscripts 
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C 

conf 
ext 
E 

int 
1 

P.G. 
res 
R 
U 
- 

critical state 
configurational 
external 
excess property 
internal 
liquid 
perfect gas 
residual 
reduced 
vapor 
partial molar property 
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